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Abstract

Numerical schemes used for computational climate modeling and
weather prediction are often of second order accuracy. It is well-known
that methods of formal order higher than two offer a significant po-
tential gain in computational efficiency. We here present two classes
of high order methods for discretization on the surface of a sphere,
first finite difference schemes satisfying the summation-by-parts prop-
erty on the cube sphere grid, secondly finite volume discretizations on
unstructured grids with polygonial cells. Furthermore, we also imple-
ment the seventh order accurate weighted essentially non-oscillatory
(WENO7) scheme for the cube sphere grid. For the finite difference
approximation, we prove a stability estimate, derived from projection
boundary conditions. We the finite volume method, we develop the
implementational details by working in a local coordinate system. We
apply the schemes to compute convection on a sphere, which is a well
established test problem. We compare the performance of the meth-
ods with respect to accuracy, computational efficiency, and ability to
capture discontinuities.

1 Introduction

Many mathematical models used for weather prediction or climate modeling
are described by systems of partial differential equations (PDE) defined on a
sphere. This paper will develop and analyze high order accurate discretiza-
tions of finite difference and finite volume type for PDEs on the sphere. To
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avoid the practical complications of realistic climate models, which can be
very complex, we will develop and compare the discretizations of high order
for the simple case of passive advection of a scalar quantity, φ(t,x),

φt + div(φu) = 0, x ∈ S, t > 0. (1)

The velocity field u = u(t,x) is a given vector valued function, tangential to
the sphere. The domain of definition is the surface of a sphere with radius r,
S = {x = (x, y, z) |x2+y2+z2 = r2}. In climate modeling computations, the
radius is usually 6.37122 × 106 m. Passive advection is a model problem for
the more complicated partial differential equations used in climate prediction,
and it is of interest in its own right for describing the transport of material,
e.g., pollutants, in the atmosphere.

This report addresses both finite difference methods and finite volume
methods. Finite difference methods are easy to define to high order of accu-
racy for any type of partial differential equation, they are easy to implement,
and are computationally efficient. The drawback with finite difference meth-
ods is that they require a logically rectangular grid, which can be difficult
to generate for complicated geometries. Finite volume methods are more
flexible with respect to geometry, and can be defined on both structured and
unstructured grids, making discretizations with grid refinement relatively
straightforward. However, finite volume methods are difficult to implement
to high order of accuracy, and are awkward to define for partial differential
equations that are not naturally on conservation form.

Another popular method used for climate modeling is the spectral element
method (SEM), see, e.g. [9]. SEM have many similarities with the finite
difference discretization by summation-by-parts operators described below.
In the SEM, the weak form of the PDE is discretized directly. The discrete
weak form therefore satisfies a summation-by-parts identity, obtained as the
discretized integration-by-parts identity used to derive the weak form.

Element based methods, such as the finite element method (FEM) or
discontinuous Galerkin methods (DG) are well suited for unstructured grids.
FEM and DG methods have excellent geometrical flexibility, but are less com-
putationally efficient than finite difference methods or the spectral element
method.

In the next section, we will develop high order finite difference discretiza-
tions for the sphere, S, using the cubed-sphere approach, see, e.g., [7]. We
will use both purely centered schemes, and the weighted essentially non-
oscillatory scheme (WENO) for capturing of steep gradients. In section 4,
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Figure 1: Cubed-sphere grid.

we develop a third and fourth order accurate finite volume discretizations for
the same domain, S, using an unstructured grid of hexagons. A additional
complication compared with the finite volume method in the plane is that,
for high order methods on the sphere, it is necessary to take into account the
curvature of the cells. Finally, Section 5 will give some numerical comparisons
of the methods when applied to a simple vortex convection problem.

2 The Equation on the cube-sphere grid

We will first consider S discretized by six adjacent curvilinear grid patches,
a so called cube sphere grid. The patches have the same number of grid
points, and the grid points coincides on the patch boundaries, thus there are
no hanging nodes. Figure 1 shows an example grid.

Each grid patch is a mapping from a square to a patch of the sphere. In
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general we consider mappings from (x, y, z) ∈ R3 to (r, ξ, η) ∈ R3 given by

x = r a(ξ, η) (2)

y = r b(ξ, η) (3)

z = r c(ξ, η) (4)

where a, b, c is a mapping from the square 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1 to a domain
on the surface of the unit sphere, a2 + b2 + c2 = 1. The domain on the
surface of a sphere with radius r0 is the level surface r = r0. The mapping
transforms the Cartesian representation of a vector, f , (f (x), f (y), f (z)) into
the curvilinear components (f (r), f (ξ), f (η)) according to

f (x) =
1

r
af (r) +

aξ
√

a2
ξ + b2ξ + c2ξ

f (ξ) +
aη

√

a2
η + b2η + c2η

f (η)

f (y) =
1

r
bf (r) +

bξ
√

a2
ξ + b2ξ + c2ξ

f (ξ) +
bη

√

a2
η + b2η + c2η

f (η) (5)

f (z) =
1

r
cf (r) +

cξ
√

a2
ξ + b2ξ + c2ξ

f (ξ) +
cη

√

a2
η + b2η + c2η

f (η)

The divergence in the mapped coordinate is

div(f) =
1

r2
(r2f (r))r +

1

J
(
J

r

1
√

a2
ξ + b2ξ + c2ξ

f (ξ))ξ +
1

J
(
J

r

1
√

a2
η + b2η + c2η

f (η))η

where J is the determinant of the Jacobian of the mapping,





xr yr zr

xξ yξ zξ

xη yη zη



 =





a b c
raξ rbξ rcξ
raη rbη rcη



 . (6)

Obviously, J = r2d(ξ, η), where d(ξ, η) is the determinant of the Jacobian
with r = 1.

The PDE to solve on each grid patch of the sphere is hence,

(Jφ)t + (
J

r

1
√

a2
ξ + b2ξ + c2ξ

φu(ξ))ξ + (
J

r

1
√

a2
η + b2η + c2η

φu(η))η = 0, (7)
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because the given velocity field will always have u(r) = 0.
It is advantageous to rewrite (1) on skew-symmetric form,

φt +
1

2
div(φu) +

1

2
(∇φ)Tu +

1

2
φdivu = 0, (8)

before discretization. Multiplication of (8) by φ and integration over a do-
main Ω ∈ R3, lead to the estimate

d

dt
||φ||2 = 2(φ, φt) = −(φ, div(φu)) − (φ, (∇φ)Tu) − (φ, φdivu)

= B.T − (φ2, divu) (9)

by use of the divergence theorem. “B.T” denotes boundary terms and the
scalar product over the domain is defined by

(u, v) =

∫

Ω

uv dx dy dz

with corresponding norm ||u||2 = (u, u). If the given velocity field is diver-
gence free, and the boundary conditions are such that the boundary terms
are zero, then the norm estimate

||φ(t)|| = ||φ(0)|| (10)

follows.

3 Discretization by centered finite differences

The grid on a patch is obtained by discretizing, ξi = (i− 1)h, i = 1, 2, . . . , N
and ηj = (j − 1)h, j = 1, 2, . . . , N where the number of points N and the
step size h are related by (N − 1)h = 1. All patches will have the same h
and N . An analytic mapping, see [7], generates the grid on patch p,

(xp,i,j, yp,i,j, zp,i,j), p = 1, . . . , 6, i = 1, . . . , N j = 1, . . . , N.

We did not attempt to smooth, or otherwise improve the grid. However it
is important for the discretization technique that we will use, that all six
grid patches have right handed coordinate systems. Let φp,i,j(t) denote the
solution at point (i, j) at time t on grid patch p, p = 1, . . . , 6. When time
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is discrete we let φn
p,i,j denote the solution at (i, j) at time tn = n∆t. The

patch index, p, will be left out when it is clear from the context.
The estimate (10) can be done for a finite difference discretization if

the discretization is done by operators that satisfy the summation-by-parts
(SBP) identity. In one space dimension, for grid functions uj and vj defined
on j = 1, 2, . . . , N , the summation-by-parts identity is

(u,Dv)1,h = −(Du, v)1,h − u1v1 + uNvN (11)

where the difference operator, D, is an even order centered operator away
from the boundaries, and modified near boundaries to satisfy (11). The
discrete scalar product is defined as

(u, v)1,h = h

N
∑

j=1

σjujvj

where the positive weights σj are different from one near the boundaries.
The boundary modification leads to some reduction in the formal order of
accuracy at the boundaries. Derivation of SBP operators and scalar products
with boundary orders/interior orders 1/2, 2/4, 3/6, and 4/8 can be found in
[8]. The simplest example is the first order boundary/second order interior
operator, defined as

Duj =







(uj+1 − uj)/h j = 1
(uj+1 − uj−1)/2h 2 ≤ j ≤ N − 1
(uj − uj−1)/h j = N

, (12)

with σ1 = σN = 1/2 and σj = 1 for 2 ≤ j ≤ N − 1.
The semi-discrete approximation of the skew symmetric form of the equa-

tions in transformed coordinates is

Ji,j
d

dt
φi,j(t) = −1

2
(DI(pi,jφi,ju

(ξ)
i,j ) +DJ(qi,jφi,ju

(η)
i,j ))−

1

2
(DI(pi,ju

(ξ)
i,j ) +DJ(qi,ju

(η)
i,j ))φi,j−

1

2
(pi,ju

(ξ)
i,jDIφi,j + qi,ju

(η)
i,j DJφi,j), (13)

where the metric coefficients are evaluated from the given grid as

pi,j = Ji,j/
√

(DIxi,j)2 + (DIyi,j)2 + (DIzi,j)2 (14)

qi,j = Ji,j/
√

(DJxi,j)2 + (DJyi,j)2 + (DJzi,j)2 (15)
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The difference operators DI and DJ are SBP operators that act in the i-
or j-indices respectively. Ji,j is computed as the determinant of the matrix
(6) with derivatives evaluated numerically by DI and DJ . Similarly (5),
with metric derivatives approximated by DI and DJ , gives the transformed
velocity components, u(ξ) and u(η), from given Cartesian velocity components.

The skew-splitting can be done in different ways, depending on how the
three factors in the conservative derivatives of (13) are split. The approxi-
mation (13) is made such that it is possible to carry over the estimate (10)
to the numerical approximation.

In order to do this, we define the two discrete scalar products over grid
patch p, p = 1, . . . , 6,

(u, v)hJ,p =
N

∑

j=1

N
∑

i=1

σiσjup,i,jvp,i,jJp,i,jh
2

and

(u, v)h,p =
N

∑

j=1

N
∑

i=1

σiσjup,i,jvp,i,jh
2.

The scalar product over the entire sphere is the sum over the six grid patches,

(u, v)hJ =
6

∑

p=1

(u, v)hJ,p (u, v)h =
6

∑

p=1

(u, v)h,p

In the SBP framework, boundary conditions consists of first applying the one
sided operators at all points, and then project the solution onto the space
where boundary conditions are satisfied, see [6]. For example, assume that
the boundary point (i, j) in one patch coincides with the the boundary point
(k, l) in another patch. Let φ′ be the solution obtained after taking one time
step (or Runge-Kutta stage), before boundary conditions are imposed. The
projection boundary conditions consist in updating

φi,j = (φ′
i,j + φ′

k,l)/2 (16)

φk,l = (φ′
i,j + φ′

k,l)/2 (17)

At the corner points where three patches meet, the same condition but as an
average over the three values is imposed.
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Theorem 1 Let the interface conditions be given by (16) and (17) (and
similarly at corners where three patches meet). Then the estimate

d

dt
||φ(t)||2Jh = −(φ(t)2, DI(pu

(ξ)) +DJ(qu(η)))h (18)

holds.

Proof: On a single patch, take the scalar product of (13) by φi,j(t) and use
the summation-by-parts identity to obtain

d

dt
||φ(t)||2Jh,r =

− (φ(t), DI(pφu
(ξ)))h,r − (φ(t), DI(pu

(ξ))φ(t))h,r − (φ(t), pu(ξ)DIφ(t))h,r

− (φ(t), DJ(qφu(η)))h,r − (φ(t), DJ(qu(η))φ(t))h,r − (φ(t), qu(η)DJφ(t))h,r =

− (φ(t)2, DI(pu
(ξ)) +DJ(qu(η)))h,r −

N
∑

j=1

σj(φ(t)2
N,jpN,ju

(ξ)
N,j − φ(t)2

1,jp1,ju
(ξ)
1,j)h

−
N

∑

i=1

σi(φ(t)2
i,Nqi,Nu

(η)
i,N − φ(t)2

i,1qi,1u
(η)
i,1 )h. (19)

Next, taking the sum over the six patches leads to

d

dt
||φ(t)||2Jh = −(φ(t)2, DI(pu

(ξ)) +DJ(qu(η)))h +B.

Where the boundary terms B consists of sums over the edges, i.e., the last two
sums of (19) from the six different patches. The terms in B can be ordered
in pairs corresponding to the same boundary location. For example, if (N, j)
and (1, k) are identical locations on the sphere but on different patches, we
study the pair

φ(t)2
N,jqN,ju

(ξ)
N,j − φ(t)2

1,kq1,ku
(ξ)
1,k.

It follows from the general theory in [6], that φ here satisfies the interface
conditions, so that φN,j = φ1,k. Therefore, B = 0 if

qN,ju
(ξ)
N,j = q1,ku

(ξ)
1,k. (20)

To see why this is true, note that the Cartesian coordinates x, y, z are
continuous across the patch interface, as is its derivatives along the inter-
face, xη, yη, zη. Take the scalar product between the cross product vector
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v = (x y z) × (xη yη zη) and the equations (5) to obtain

pu(ξ) = v · (f (x) f (y) f (z)) − v · (aη bη cη)
u(η)

√

a2
η + b2η + c2η

Note that J = −(xξ yξ zξ) · v. It is obvious that the right hand side only
depend on the Cartesian coordinates and its derivatives with respect to η.
Therefore also the left hand side is continuous across the patch interface and
(20) follows. The description here is valid also for the discrete problem, since
is unchanged if the derivatives with respect to ξ and η are replace by the
finite difference operators DI and DJ respectively. Finally, (20) applied at
all interface points implies that B = 0, and the estimate (18) follows.

Note that if the discretization of the velocity field is perfectly divergence
free, the norm over the entire sphere surface of the solution is conserved in
time.

3.1 WENO finite difference schemes

Equation (7) is a conservation law in two space dimensions with ξ-direction
flux

f (ξ) =
J

r

1
√

a2
ξ + b2ξ + c2ξ

φu(ξ) = pu(ξ)φ.

and a similar expression for the η direction flux. The WENO discretization
of (7) is of flux difference form where the fluxes are based on the splitting

f
(ξ)
i = f

(ξ)+
i + f

(ξ)−
i with

f
(ξ)+
i = piu

(ξ)+
i φi f

(ξ)−
i = piu

(ξ)−
i φi

where u(ξ)− = min(0, u(ξ)) and u(ξ)+ = max(0, u(ξ)), and pi is the metric
coefficient from (14). The η-direction flux is similar. The flux difference
hi+1/2 − hi−1/2 approximates the flux derivative. The numerical fluxes are of
the split form

hi+1/2 = h+
i+1/2 + h−i+1/2

where h+
i+1/2 is a weighted sum of flux stencils of f

(ξ)+
i and h−i+1/2 is a weighted

sum of stencils of f
(ξ)−
i+1 . The weighting is solution adaptive and is designed to

give more weight to stencils that cover smooth parts of the solution and less
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Figure 2: Unstructured grid on the sphere, only the top part of the grid is
displayed.

weight to stencils that intersects discontinuities. When all stencils equally
smooth the weights adapt to give optimal order of accuracy. The 2r − 1th
order WENO scheme uses weighted sums of r rth order accurate flux stencils.
For a complete description, see [5]. We have here implemented the case r = 4,
thus making the scheme a sum of 4th order stencils, with an seventh order
accuracy when the solution is smooth.

On the cube sphere grid, the WENO scheme is biased away from the
boundary, by forcing the weights of stencils that would require points outside
the domain to zero. This leads to local third order accuracy on the patch
boundaries.

4 Finite volume discretization on an unstruc-

tured grid

We are given a decomposition of the surface of the sphere, S, into cells, Ai,

S = ∪N
i=1Ai,

where the cells have disjoint interiors and their boundaries, ∂Ai, are piecewise
circular arcs. The number of sides can be different for different cells. Figure 2
shows the upper part of an example grid.
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Finite volume schemes for advection on the sphere are obtained by dis-
cretizing the integral form of (1),

d

dt

1

A

∫

A

φ dS +
1

A

∫

∂A

φu · n ds = 0. (21)

where A is a subset of S and n is normal to the boundary of A and tangential
to S. s is a curve parameter along the cell boundary. (21) can be derived by
integration of (1) in three-dimensional space over a cell between two spherical
shells, use of Gauss’ theorem, and letting the distance between the spherical
shells go to zero.

The cell average of a function φ over cell Ai, φi, and the area of the cell,
|Ai|, are defined by

φi(t) =
1

|Ai|

∫

Ai

φ dS and |Ai| =

∫

Ai

dS

respectively.
The finite volume scheme stores the cell averages as unknown variables,

the semi-discrete approximation being

d

dt
φi(t) = − 1

|Ai|
∑

j∈N(i)

gi,j

where gi,j is numerical flux between cells Ai and Aj. N(i) is the set of
neighbors of Ai.

The finite volume approximation will reconstruct the given cell averages
to a piecewise polynomial representation R(x, φ), such that R is a polynomial
for x ∈ Ai, with possible discontinuities over ∂Ai. R is constructed to satisfy
the conservation property

φj =
1

|Aj|

∫

Aj

R(x, φ) dS j ∈ T (i)

and the rth order accuracy condition

R(x, φ) = φ(x) + O(∆r),

where T (i) is the set of cells forming the stencil at i and ∆ is a typical cell
linear size. On an edge directed from x1 to x2 will denote the limit values of
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the reconstructed polynomials from the left and the right sides, by φL and
φR respectively.

The side between the cells is the circular arc between the two side end
points on the sphere, say x1 and x2. It follows from (21) that gi,j is an
approximation of

∫

x2

x1

φ(u · n) ds. (22)

The parametrization of the edge,

x(β) = (sin(α12 − β)x1 + sin βx2)/ sinα12 0 ≤ β ≤ α12 (23)

where cosα12 = (x1 · x2)/r
2, gives

∫

x2

x1

φu · n ds =

∫ α12

0

φ(t,x(β))(u(t,x(β)) · n)|x′(β)| dβ.

It is straightforward to verify that |x(β)| = r for any β and that the unit
normal vector is n = (x1 × x2)/r

2. Furthermore, it follows from (23) that
|x′(β)| = r. We define the numerical flux by approximating the parametrized
integral by the two point Gaussian numerical quadrature formula, and obtain

gi,j =
α12

2

(

g(φL(t,x(β−)), φR(t,x(β−))) + g(φL(t,x(β+)), φR(t,x(β+)))
)

.

(24)
The first order accurate numerical flux function, g(φL, φR), satisfies the con-
sistency condition

g(φ, φ) = rφ(u · n).

The Gaussian points are

β− =
α12

2
(1 − 1√

3
) β+ =

α12

2
(1 +

1√
3
).

The numerical experiments in Sec. 5 will use the upwind flux

g(φL, φR) =

{

rφL(u · n) (u · n) > 0

rφR(u · n) (u · n) < 0
.

The velocities u are here assumed to be given functions that can be evaluated
anywhere. In a realistic climate simulation, these are computed by auxiliary

12



differential equations and it might then be necessary to interpolate or to
reconstruct the velocity to the Gauss points as well.

The reconstruction algorithm is based on the following local parametriza-
tion of S at the cell i,

x(u, v) =
r

|x̂(u, v)| x̂(u, v)

where x̂(u, v) is the tangent plane at the cell center, xi,

x̂(u, v) = xi + ueu + vev.

Thus |xi| = r, and x̂(0, 0) = xi. eu is chosen arbitrarily as a unit vector in
the tangent plane at xi, and ev = xi × eu/r. The inverse mapping is given
by

u = (eu · x)
r2

x · xi

v = (ev · x)
r2

x · xi

The integral over a spherical polygon, A, is transformed to the integral over
a polygon, B, in the (u, v) coordinates by

∫

A

f(x) dA =

∫

B

f(x(u, v))|∂x
∂u

× ∂x

∂v
| du dv.

where is straightforward to verify that
∣

∣

∣

∣

∂x

∂u
× ∂x

∂v

∣

∣

∣

∣

=
r3

|x̂(u, v)|3 ,

because the basis vectors xi, eu, and ev are orthogonal.
We determine the reconstruction polynomial for the cell i as a function

of u and v. For third order of accuracy, we use the a quadratic polynomial,

Ri(u, v) = c00 + c10u+ c01v + c20u
2 + c11uv + c02v

2.

and a similar cubic polynomial for fourth order. The polynomial is required
to satisfy

φ̄j =
1

Aj

∫

j

Ri dA =
1

Aj

∫

Bj

Ri(u, v)
r3

|x̂(u, v)|3 du dv

for j ∈ T (i). This leads to the linear system of equations
∑

k,l

aj,klckl = Ajφ̄j, j ∈ T (i) (25)
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for ckl, with coefficients

aj,kl =

∫

Bj

ukvl r3

|x̂(u, v)|3 du dv. (26)

The same reasoning as given in [3] shows that the point values are recon-
structed to rth order accuracy by a polynomial of degree r − 1.

Denote v = (u v) and apply the numerical quadrature formula for a
triangle, T ,

∫

T

f(v) du dv =
|T |
60

(3
3

∑

i=3

f(vi) + 8
∑

1≤i<j≤3

f(vij) + 27f(v123)), (27)

in the u-v plane to evaluate the coefficients (26). Here vi are the corners of
the triangle, vij is the midpoint on the side from vi to vj, and v123 is the
barycenter. (27) is exact for polynomials of degree three and lower, see [1].
The polygonal cells are decomposed into sub triangles by joining the vertices
and the barycenter, and (27) is applied to each sub triangle.

To summarize, the finite volume approximation consists by the following
steps

1. Determine the stencil T (i)

2. Compute aj,kl in (25) by use of (27)

3. Solve (25) for ckl, which determines the reconstruction polynomial.

4. Compute the numerical flux from (24) by evaluating the reconstruction
polynomial at the Gaussian points.

For the third order method, the stencil T (i) at point i contains the cell i
itself and five other cells to determine the six coefficients in the third order
reconstruction polynomial. For fourth order of accuracy, the stencil must
have at least ten cells. Because the grid used consists of spherical hexagons
and pentagons, the third order polynomial is conveniently determined by
using all direct neighbors of pentagons, and all direct neighbors except one
of hexagons. In the numerical experiments below, the most downwind cell
is excluded in the case of hexagons, where the downwindness of cell j from
the center cell i is determined by the size of u ·d/|u|, where u is the velocity
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vector at the cell center of i and d the vector from the cell center of j to the
cell center of i. This computation is done in the projected u− v coordinates.

Other possibilities for stencil selection are a) to use the stencil that gives
the reconstruction polynomial with smallest variation in the cell, or b) to use
all possible neighbors and second neighbors and solve (25) as an overdeter-
mined system by the least squares method, or c) to use the WENO idea by
building the stencil as a weighted average lower order stencils, as described
in [4, 11]. All these methods can easily be included in the algorithm above
by modifying the determination of T (i) in step 1.

5 Numerical experiments

5.1 Finite difference schemes

We solve the standard test example of a vortex convected on the surface
of a sphere, described in, e.g., [2]. The velocity field is divergence free,
and corresponds to a wind rotating around an axis with a constant angle α
between the polar axis and the axis of rotation. The stream function of the
velocity is given by

ψ = −u0z cosα+ u0x sinα = u0r(c cosα− a sinα)

from which the velocity components on the curvilinear grid are obtained as

u(ξ) = −
r
√

a2
ξ + b2ξ + c2ξ

J

∂ψ

∂η
(28)

u(η) =
r
√

a2
η + b2η + c2η
J

∂ψ

∂ξ
(29)

We define the discretized velocities as

u
(ξ)
i,j = − 1

pi,j

DJψi,j (30)

u
(η)
i,j =

1

qi,j
DIψi,j (31)

(32)

to obtain zero discrete divergence,

DI(pi,ju
(ξ)
i,j ) +DJ(qi,ju

(η)
i,j ) = −DI(DJψi,j) +DJ(DIψi,j) = 0.
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accuracy L∞-error with N = 45 L∞-error with N = 89 order
1/2 0.41 0.12 1.78
2/4 0.0302 0.0071 2.09
3/6 0.0125 0.0028 2.16
4/8 0.0198 0.0034 2.54

Table 1: Errors in the numerical solution after one period for methods of
different formal accuracy

We solve the problem on a sphere with r = 6.37122 × 106m with diagonal
wind, α = π/4, and with u0 = 2πr/(12 · 24 · 3600)ms−1, which means that
the period of the flow is 12 days. The standard test example has initial data

φ(θ, λ) =

{

h0

2
(1 + cosπs) s < 1

0 s ≥ 1
(33)

where s = 3 arccos(sin θc sin θ + cos θc cos θ sin(λ − λc)), and h0 = 1000m.
θc, λc is a fixed starting position. The data is given in spherical coordinates
θ, λ. At a given grid point, (xi,j, yi,j, zi,j), we compute θ, λ by inverting the
spherical coordinate transformation











x = r cosλ cos θ

y = r sinλ cos θ

z = r sin θ

.

Figure 3 shows the initial data.
To assess the error in the computation, Fig. 4 shows the norm of the

error as function of time for the four different methods with boundary ac-
curacy/interior accuracy 1/2, 2/4, 3/6, and 4/8 on a grid with N = 45
(corresponding to the case c44 in [7]). All computations used the standard
fourth order Runge-Kutta scheme with CFL number 0.8. The norms are
normalized as suggested in [2]. Similarly, Fig. 5 shows the same quantities
as Fig. 4, but with N = 89.

Table 1 displays the errors after one period with the different accuracy
schemes. The observed convergence order between the coarse and fine grids,
shown in the last column of Table 1 indicates all methods converges approx-
imately with second order of accuracy. The error is, however, smaller for the
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Figure 3: Cosine bell initial data.
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Figure 4: Error vs. time with cosine bell initial data, N = 45, 1 period.
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Figure 5: Error vs. time with cosine bell initial data, N = 89, 1 period.
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Figure 6: Error vs. time with cosine bell initial data, N = 45, 3000 periods.

higher order schemes. Here the sixth order scheme has the smallest absolute
error, and the eight order scheme shows the best convergence rate. The rea-
son that the schemes do not converge with the formal order of accuracy is,
of course, that the initial data is non-smooth, there is a discontinuity in the
derivative.

For long term climate effects, it is necessary to integrate the equation for
many years. The period of 12 days, means that there are 3000 periods in
100 years, which could be a reasonable integration time. We show in Fig. 6
the error in time when the initial data (33) is integrated for 3004.3 periods
(corresponding to 1.4 million time steps) with the 4/8 method on the grid
with N = 45. At the final time, the norm error is close to 30 %. Nevertheless,
the vortex is still visible in solution shown in Fig. 7a. The exact solution,
shown in Fig. 7b, we conclude that the dispersive errors are small.

A second test, we replace the initial data by the smooth

φ(θ, λ) =
h0

2
exp(−Ks2) (34)

where K = 0.451. h0 and s are the same as in (33). Figure 8 shows the initial
data (34). Figures 9 and 10 shows the evolution of the maximum norm error
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Figure 7: Solution after 3000.4 periods with cosine bell initial data, N = 45.
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Figure 8: Smooth initial data.
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Figure 9: Error vs. time with smooth initial data, N = 45, 1 period.

in time on grids with N = 45 and N = 89 respectively.
Table 2 shows the error after one period. The observed convergence rate

in the last column of Table 2 convergence rate is now close to the expected
rate, which should be at least equal to the formal order of the boundary
operators.

5.2 Finite volume schemes

We use a grid with 40962 cells, having the edge lengths varying between
0.013r and 0.0071r. The corresponding resolution for the cube sphere case
is N = 83, because 6 × 832 ≈ 41000.

The initial data φ(t,0) is first transformed to cell averages, by the param-
etrization and numerical quadrature procedure described in Sec. 4. The error
is evaluated by comparing the computed cell averages with the cell averages
of the exact solution, also computed by the numerical quadrature procedure.

Fig. 11 shows the error in maximum norm when convecting the cosine
bell function (33) on the unstructured grid on period in time. The stencil is
third order accurate, and biased in the upwind direction. Fig. 12 displays the
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Figure 10: Error vs. time with smooth initial data, N = 89, 1 period.

accuracy L∞-error with N = 45 L∞-error with N = 89 order
1/2 0.0296 0.00725 2.03
2/4 0.00144 2.259 × 10−4 2.68
3/6 0.000290 2.853 × 10−5 3.35
4/8 0.000317 1.205 × 10−5 4.72

Table 2: Errors in the numerical solution after one period for methods of
different formal accuracy
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Figure 11: Error vs. time for the third order finite volume scheme when
convecting the cosine bell function.

time evolution of the error norm, when convecting the smooth function (34),
with the same method as used for the cosine bell function. As expected, the
smoother function has a smaller error. Table 3 presents a comparison of the
finite difference and finite volume methods. To have a fair comparison, the
finite difference scheme is run with N = 83, using the method of order 6/3.
This gives at least the same formal order of accuracy as the third order finite
volume scheme, and a comparable number of grid points. Table 3 shows
that the error when convecting the smooth initial data (34) is considerably
smaller than with the other two methods. Furthermore, the CPU time of the
finite difference scheme is around 16 times smaller than for the finite volume
method. The last column of Table 3 shows the minimum and maximum of
the numerical solution when convecting a step function (’top hat’) that jumps
between 0 and 500. The upwind character of the finite volume approximation
makes it better at keeping the minimum and maximum values in range. The
same is true for the WENO7 scheme, which is designed for shock capturing
computations. The property that the solution do not undershoot or overshoot
is important in many climate modeling applications. This property can be
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Figure 12: Error vs. time for the third order finite volume scheme when
convecting a smooth function.

CPU time Error smooth data Top hat range
FV 422 s 4.00 × 10−2 [−20, 514]
FD 26.8 s 3.42 × 10−5 [−122, 605]

WENO7 42.7 s 7.36 × 10−3 [−3, 512]

Table 3: Comparison of the finite volume (FV), finite difference (FD) and
finite difference WENO7 schemes. Cpu time and error after one period of
convecting smooth initial data. Top hat range shows range of the numerical
solution after one period of convection of a top hat function with jump from
0 to 500.
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guranteed for the finite volume scheme by introducing the positivity limiter
presented in [10].

The the formal accuracy drops to third order at the boundary for the
WENO7 scheme, with the present implementation of boundary operators.
The accuracy can, however, be improved by better choices of boundary op-
erators and is the subject of ongoing research.

6 Conclusions

We have presented a high order finite difference scheme for convection on
the sphere, using the cube sphere discretization, which is proved to be stable
in L2 norm. Furthermore, we have also presented an upwind high order
finite volume discretization for unstructured hexagonal meshes on the sphere.
Numerical comparisons have shown the relative strengths and weaknesses of
the two methods.

For the cube sphere discretization, it is possible to hybridize the current
methods to obtain a scheme that combines the accuracy of the centered
finite difference scheme with the shock capturing capabilities of the WENO7
scheme. Further development is needed to implement the schemes for more
application relevant differential equations, e.g., the shallow water equations.
Further testing of the unstructured algorithm would be interesting, since the
various possible choices of stencils have not been fully explored, and is outside
the scope of the current work. Some of the implementation details could be
applicable to other finite volume like approximations, e.g., the discontinuous
Galerkin method.

This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344.
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